ar X iv : 0 70 5 . 42 46 v 2 [ m at h . G R ] 3 1 M ay 2 00 7 The equation w ( x , y ) = u over free groups
نویسنده
چکیده
Using the theory developped by Olga Kharlampovich, Alexei Mias-nikov, and independently by Zlil Sela to describe the set of homomor-phisms of a f.g. group G into a free group F , we describe the solutions to equations with coefficients from F and unknowns x, y of the form w(x, y) = u, where u lies in F and w(x, y) is a word in {x, y} ±1 .
منابع مشابه
ar X iv : 0 70 5 . 46 61 v 1 [ m at h . A G ] 3 1 M ay 2 00 7 ALGEBRAIC CYCLES AND MUMFORD - GRIFFITHS INVARIANTS
Let X be a projective algebraic manifold and let CH(X) be the Chow group of algebraic cycles of codimension r on X, modulo rational equivalence. Working with a candidate Bloch-Beilinson filtration {F }ν≥0 on CH(X)⊗Q due to the second author, we construct a space of arithmetic Hodge theoretic invariants ∇J(X) and corresponding map φ X : Gr F CH(X)⊗Q → ∇J(X), and determine conditions on X for whi...
متن کاملar X iv : 0 80 5 . 37 89 v 1 [ m at h . A P ] 2 4 M ay 2 00 8 The balance between diffusion and absorption in semilinear parabolic equations ∗
Let h : [0,∞) 7→ [0,∞) be continuous and nondecreasing, h(t) > 0 if t > 0, and m,q be positive real numbers. We investigate the behavior when k → ∞ of the fundamental solutions u = uk of ∂tu − ∆u m + h(t)u = 0 in Ω × (0, T ) satisfying uk(x, 0) = kδ0. The main question is wether the limit is still a solution of the above equation with an isolated singularity at (0, 0), or a solution of the asso...
متن کاملar X iv : 0 70 5 . 10 42 v 1 [ m at h . M G ] 8 M ay 2 00 7 NON - POSITIVE CURVATURE AND THE PTOLEMY INEQUALITY
We provide examples of non-locally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolemy.
متن کاملar X iv : 0 70 7 . 03 46 v 1 [ m at h - ph ] 3 J ul 2 00 7 THE ONE - DIMENSIONAL SCHRÖDINGER - NEWTON EQUATIONS
We prove an existence and uniqueness result for ground states of one-dimensional Schrödinger-Newton equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009